Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 191: 110976, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32272386

RESUMEN

Infections related to bacterial colonization of medical devices are a growing concern given the socio-economical impacts in healthcare systems. Colonization of a device surface with bacteria usually triggers the development of a biofilm, which is more difficult to eradicate than free-floating or adhered bacteria and can act as a reservoir for subsequent infections. Biofilms often harbor Viable but nonculturable (VBNC) cells that are likely to be more resistant to antibiotic treatment and that can become active in more favorable conditions causing infection. Biofilm formation is dependent on different factors, chiefly the properties of the surface and of the surrounding medium, and the hydrodynamic conditions. In this work, the antifouling performance of a poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)) brush was evaluated in vitro in conditions that mimic a urinary catheter using Escherichia coli as a model organism. The results obtained with the brush were compared to those obtained with two control surfaces, polydimethylsiloxane (PDMS) (the most common material for catheters) and glass. A decrease in initial adhesion and surface coverage was observed on the brush. This antifouling behavior was maintained during biofilm maturation and even in a simulated post-bladder infection period when the reduction in total cell number reached 87 %. Biofilms were shown to adapt their architecture during that period and VBNC cells adsorbed weakly on the brushes and were completely washed away. Taken together, these results suggest that the use of the poly(HPMA) brush in urinary tract devices such as catheters and stents may reduce biofilm formation and possibly render the formed biofilms more susceptible to antibiotic treatment and with reduced infectivity potential.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/química , Escherichia coli/crecimiento & desarrollo , Metacrilatos/química , Polímeros/química , Catéteres Urinarios , Infecciones por Escherichia coli/microbiología , Humanos , Propiedades de Superficie
2.
Colloids Surf B Biointerfaces ; 83(2): 376-81, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21208786

RESUMEN

Non-specific protein adsorption from complex biological media, especially from blood plasma, is an urgent challenge for the application of nanoparticles as delivery systems, diagnostics, and other biomedical application. Nanocapsules (NC) prepared from FDA-approved degradable poly(ɛ-caprolactone) shell and Mygliol 812(®) oil in the core were coated with mono-methoxy terminated oligo(ethylene glycol) methacrylate (poly(MeOEGMA)) polymer brush layers with a well-controlled thickness at the nanometer scale up to 350 nm using surface initiated atom transfer radical polymerization in water or phosphate buffered saline. Incubation of uncoated NC with human serum albumin solution, fetal bovine serum, or human blood plasma resulted in fast aggregation observed by dynamic light scattering as an increase in diameter of particles present in the solutions. Conversely, these biological fluids affected only marginally the size distribution of the NC coated with a 60 nm thick poly(MeOEGMA) layer. The high suspension stability of the coated NC in complex biological fluids was related to the suppressed deposition of proteins from these fluids observed by surface plasmon resonance (SPR) on analogous poly(MeOEGMA) layer prepared on flat surfaces of SPR chips.


Asunto(s)
Medios de Cultivo/química , Sangre Fetal/química , Nanocápsulas/química , Polímeros/química , Albúmina Sérica/química , Animales , Bovinos , Humanos , Aceites/química , Tamaño de la Partícula , Propiedades de Superficie
3.
Langmuir ; 25(11): 6328-33, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19408903

RESUMEN

Nonspecific adsorption of proteins is a crucial problem in the detection of analytes in complex biological media by affinity sensors operating with label-free detection. We modified the gold surface of surface plasmon resonance (SPR) sensors with three types of promising antifouling coatings: self-assembled monolayers (SAM)s of alkanethiolates terminated with diethylene glycol and carboxylic groups, poly(ethylene glycol) (PEG) grafted onto the SAMs, and zwitterionic polymer brushes of poly(carboxybetaine methacrylate), poly(sulfobetaine methacrylate), and poly(phosphorylcholine methacrylate). Using SPR, we compared the efficacy of the coatings to reduce nonspecific adsorption from human blood plasma and from single-protein solutions of human serum albumin, immunoglobulin G, fibrinogen, and lysozyme. There was no direct relationship between values of water contact angles and plasma deposition on the coated surfaces. A rather high plasma deposition on SAMs was decreased by grafting PEG chains. Fouling on PEG was observed only from plasma fractions containing proteins with molecular mass higher than 350 000 Da. The adsorption kinetics from plasma collected from different healthy donors differed. Poly(carboxybetaine methacrylate) completely prevented the deposition from plasma, but the other more hydrophilic zwitterionic polymers prevented single-protein adsorption but did not prevent plasma deposition. The results suggest that neither wettability nor adsorption of the main plasma proteins was the main indicator of deposition from blood plasma.


Asunto(s)
Plasma/química , Adsorción , Oro/química , Humanos , Modelos Biológicos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...